Math 2150 - Homework # 11 Review of Power Series

- 1. Find a power series expansion for f(x) centered at x_0 . State the radius of convergence r of the series.
 - (a) $f(x) = x^3 + x$ centered at $x_0 = 1$
 - (b) f(x) = x centered at $x_0 = -2$
 - (c) $f(x) = x^2$ centered at $x_0 = 1$
 - (d) $f(x) = \frac{1}{x}$ centered at $x_0 = 1$. [Hint: Use $\ln(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \dots$ which has radius of convergence r = 1]

(e)
$$f(x) = e^{x^2}$$
 centered at $x_0 = 0$
[Hint: Use the power series for e^x .]
(f) $f(x) = \frac{-x}{1-x^2}$ centered at $x_0 = 0$
[Hint: Use $\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^5 + \dots$
which has radius of convergence $r = 1$]

- 2. (a) Estimate sin(0.1) using the first five terms of the power series for sin(x) centered at $x_0 = 0$.
 - (b) Then use your calculator to compare your estimate to the true value of sin(0.1). How close were you?
- 3. (a) Estimate $\ln(1.1)$ using the first four terms of the power series for $\ln(x)$ centered at $x_0 = 1$.
 - (b) Then use your calculator to compare your estimate to the true value of $\ln(1.1)$. How close were you?